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ABSTRACT

Knowledge about the structure and organization of terrorist networks is important for both terrorism
investigation and the development of effective strategies to prevent terrorists’ attacks. However, except for
network visualization, terrorist network analysis remains primarily a manual process. Existing tools do not
provide advanced structural analysis techniques that allow extraction of network knowledge from large
volumes of criminal-justice data. It is a well known fact that terrorist activities consist of dispersed
organizations (like non-hierarchical organizations), small groups, and individuals who communicate,
coordinate and conduct their campaign in a network-like manner. There is a pressing need to
automatically collect data of terrorist networks, analyze such networks to find hidden relations and groups,
prune datasets to locate regions of interest, find key players, characterize the structure, trace point of
vulnerability, and detect efficiency of the network. To meet this challenge, we designed and developed a
knowledgebase for storing and manipulating data collected from various authenticated websites. This
paper presents framework of investigative data mining toolkit, our recently introduced techniques and
algorithms (which are implemented in the investigative data mining toolkit) could be useful for law
enforcement agencies that need to analyze terrorist networks and prioritize their targets. Applying
recently introduced algorithms for constructing hidden hierarchy of non-hierarchical terrorist networks, we
present case studies of the terrorist attacks that occurred in past, in order to construct command structure
of the networks.
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1.0 INTRODUCTION

The threats facing society today require new methods for modeling and analysis. In fact, civil security
decision makers, analysts and field operators fighting terrorism and organized crime across the European
Union all need front-line integrated technologies to support their cooperative work. Our opponents are no
longer organized in hierarchical structures, but instead consist of individuals and groups that are loosely
organized in “dark networks”. Instead of large-scale military attacks, they stage attacks or set bombs
against unprotected civilians, or seek to influence crowds of legitimate demonstrators so that critical riot
situations occur.

In order to construct decision support systems that take account of these new factors, new, more powerful
methods and techniques from several technological domains need to be brought together and integrated.
Experience shows that the networks can be unwound and analyzed after the events. Although it provides
the necessary evidence for bringing criminals to justice, it is then too late to prevent loss of life and
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material damage.

Mathematical methods used in our research on Investigative Data Mining [1] [2] are clearly relevant to
law enforcement intelligence work and may provide tools to discover terrorist networks in their planning
phase and thereby prevent terrorist acts and other large-scale crimes from being carried out. Relevant
patterns to investigate include connections between actors (meetings, messages), activities of the involved
actors (specialized training, purchasing of equipment) and information gathering (time tables, visiting
sites).

Investigative Data Mining (IDM) offers the ability to firstly map a covert cell, and to secondly measure
the specific structural and interactional criteria of such a cell. This framework aims to connect the dots
between individuals and “map and measure complex, covert, human groups and organisations”. The
method focuses on uncovering the patterning of people’s interaction, and correctly interpreting these
networks assists “in predicting behaviour and decision-making within the network”.

IDM also endows the analyst the ability to measure the level of covertness and efficiency of the cell as a
whole, and also the level of activity, ability to access others, and the level of control over a network each
individual possesses. The measurement of these criteria allows specific counter-terrorism applications to
be drawn, and assists in the assessment of the most effective methods of disrupting and neutralising a
terrorist cell. In short IDM “provides a useful way of structuring knowledge and framing further research.
Ideally it can also enhance an analyst’s predictive capability”.

IDM borrowed social network analysis (SNA) and graph theory techniques for connecting the dots; our
goal is to propose mathematical methods for destabilizing terrorist networks after linking the dots between
them.

In investigative data mining, a number of variations exist in the literature. One is known as link analysis
(see for example [5] [6]). Link analysis research uses search and probabilistic approaches to find structural
characteristic in the network such as hubs, gatekeepers, pulse-takers [7], or identifying potential
relationships for relational data mining. Link analysis alone is insufficient as it looks at one side of the
coin and ignores complex nonlinear relationships that may exist between the attributes. Another approach
depends purely on visualization, such as NetMap [8]. Unfortunately, these tools that depend on
visualization alone - despite being useful to provide some insight - they are insufficient and rely on the
user to carry out many tedious and time consuming tasks, many of which could be automated.

In addition to the previous discussion, most of the work on link analysis or network visualization ignores
the construction of hidden hierarchy of coverts networks. Uncovering a relationship among or within
attributes (connecting the dots) is an important step, but in many domains it is more important to
understand how this relationship evolved. Hence, understanding network dynamics and evolution is
needed to complete the picture. Once we understand the dynamics and evolution of these relationships and
construct the hidden hierarchy, we can search for ways to disconnect the dots when and if needed.

The three innovative points of our research are [2]:

1. The use of new measure Position Role Index (PRI) on the pattern of efficiency introduced by Vito
Latora and Massimo Marchiori [27]. This measure identifies key players (gatekeepers/ leaders)
and followers in the network.

2. The use of another measure known as Dependence Centrality (DC) which discovers who is
depending on whom in a network.

3. Estimate possible hierarchical structure of a complex network by applying degree centrality and
Eigenvector centrality from social network analysis (SNA) literature and combining it with new
measure dependence centrality.

This paper presents some case studies of the terrorist events occurred in the past, using software prototype
that we have developed. The structure of the rest of this paper is as follows. In Section 2, a brief
introduction about terrorist network analysis is presented. Section 3 presents a concise review to point the
reader to several key papers in the literature; whereas Section 4 discusses the models we have used for
destabilizing terrorist networks. Section 5 discusses an overview of the iMiner software prototype system;
whereas four case studies are then presented in Section 6. Conclusions are then drawn in Section 7.
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2.0 TERRORIST NETWORK ANALYSIS

The threat from modern terrorism manifests itself worldwide in locally and internationally operating
network structures. Before focusing on the development and composition of these networks, we will
initially attempt to answer the question: what exactly is a terrorist network?

Persons involved in support, preparation or commission of terrorist attacks almost never operate alone, but
as members of - sometimes overlapping - network structures. Within these networks they co-operate with
individual members or small groups of members (operational cells). A modern terrorist network differs
from other terrorist groups and organizations in that it lacks a formal (hierarchical) structure, and has an
informal, flexible membership and fluctuating leadership. It is incorrect, however, to conclude that such a
network possesses no structure whatsoever. There is always a pattern of connections between individuals
who communicate with one another with a view to achieving a common goal. In some cases these
communication lines converge in one or more core groups, which thus play a coordinating and controlling
role. In other cases there are random communication patterns between all members while the network
functions practically without any leadership or central control. It is also possible for several groups to be
active within one network.

The flexible and informal character of such a network makes it easy for individual members to establish
temporary ad-hoc contacts, in addition to more permanent relations. It also leaves room for personal
initiative. The relations within a network are constantly changing in character and duration. In most cases
we can distinguish a core group surrounded by a diffuse network of individuals, with central control
usually restricted to a minimum. Personal ties between members bind the network together. These
relationships are usually based on a shared political-religious ideology, mutual trust, family or friendship
ties, shared origin and/or shared experiences in training camps or jihad areas. The notion of a common
enemy also stimulates bonding among network members.

The above characteristics lead to the following definition:

A terrorist network is a fluid, dynamic, vaguely delineated structure comprising a number of interrelated
persons who are linked both individually and on an aggregate level (cells / groups). They have at least a
temporary common interest, i.e. the pursuit of a jihadism-related goal (including terrorism).

Persons within such a network are referred to as members. A member is a person who contributes actively
and consciously to the realization of the aforementioned goal within the bounds of the network.

This definition is in line with the definition of criminal networks used in Criminology, which does not
refer to permanent structures, but to temporary, flexible co-operative structures between individuals, based
on kinship, friendship, business opportunism, coincidence, necessity, temptation and force, or to the fact
that members are colleagues, neighbours or fellow convicts. This co-operation gradually evolves into
certain customs and traditions which lead to ‘habituation, mutual interdependence and trust, and
hierarchical relations [8]. This assessment of fluid and dynamic criminal networks was described in an
extensive study into organized crime [9].

2.1 Centrality measures for Analyzing Terrorist Networks

Centrality is one of the most important and widely used measures for analyzing social networks. Nearly
all empirical studies try to identify the most important actors (also known as vertices / nodes) within the
network. Four measures of centrality are commonly used in network analysis: degree, closeness,
betweenness, and eigenvector centrality. The first three were described in modern form by Freeman [10]
while the last was proposed by Bonacich [11]. Let us begin with degree.

Degree centrality measures how active a particular node is. It is defined as the number of direct links a
node k has:

Cok) = Y a(i.k). m
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where n is the total number of nodes in a network, and a(i ,K) is a binary variable indicating whether a link
exists between i" and k™ nodes. A network member with a high degree could be the leader or “hub” in a
network.

Closeness centrality [10] is the sum of the length of geodesics (shortest paths between two nodes) between
a particular node k and all other nodes in a network. It actually measures how far away one node is from
other nodes and is sometimes called farness:

C.k) = 1(0.K), @

where I(i, k) is the length of the shortest path connecting i and k™ nodes.
Betweenness centrality [10] measures the extent to which a particular node lies between other nodes in a
network. The betweenness of k™ node is defined as the number of geodesics passing through it:

Co) =Yg, (k). )
ko

where g; (K) indicates whether the shortest path between two other i"™ and " nodes passes through the k™
node. A member with high betweenness may act as a gatekeeper or broker in a network for smooth
communication or flow of goods (e.g., drugs).

A more sophisticated version of the same idea is the so-called Eigenvector centrality. Eigenvector
centrality x; of a node in a network is defined to be proportional to the sum of the centralities of the node’s
neighbours, so that a node can acquire high centrality either by being connected to a lot of others (as with
simple degree centrality) or by being connected to others that themselves are highly central. We write

1 n
Xi:zzpﬁ,jxj’ 4)
i=1

where n is total number of nodes and A is constant. In matrix notation this becomes Ax = Ax, so that x is an
eigenvector of the adjacency matrix [11]. Assuming that we wish the centralities to be non-negative, it
can be shown that A must be the largest Eigen value of the adjacency matrix and x the corresponding
Eigenvector.

2.1.1 Example

Figure 1 shows an example of a terrorist network, which maps the links between terrorists involved in the
tragic events of September 11, 2001. This graph was constructed by Valdis Krebs [12] using the public
data that were available before, but collected after the event. Even though the information mapped in this
network is by no means complete, its analysis may still provide valuable insights into the structure of a
terrorist organization. This graph is reconstructed in this paper, using metadata (additional information) of
every terrorist involved in the attacks.

According to Kreb’s analysis [12], this network had 62 members in total, of which 19 were kidnapers, and
43 assistants: organizers, couriers, financiers, scouts, representatives, coordinators, counterfeiters, etc.
Allen [13] found that successfully functioning large networks typically comprise 25-80 members, with
optimal size between 45 and 50. A close match exists between the results of Allen’s analysis of
collaborating networked groups and this particular example of terrorist group.

Inspection of this network by standard measures of network structure reveals firstly its low connectedness.
A member of this network holds only 4.9 connections with others members on average (also known as
degree centrality), which means that average members were rather isolated from the rest of the network.
The density (which is defined as the number of actual links divided by the number of possible links) of
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this network is only 0.08, meaning that only 8% of all possible connections in the network really exist (see
Figure 2).
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Figure 1. The dataset of 9-11 hijackers and their affiliates. The dataset originally
constructed by Valdis Krebs, but re-constructed in iMiner, using additional information of
every entity.
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Figure 2. 9-11 Terrorists Network’s Neighbourhood
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In spite of low connectedness, however, the nodes of this network are relatively close. The average
closeness of nodes is 0.35. Betweenness as stated above is another important measure in SNA and it
indicates a node’s importance for communication among other nodes. The average betweenness of this
network is 0.032, indicating relatively high average redundancy. However the betweenness of 40 nodes is
in fact less than 1% and only 6 nodes have betweenness higher than 10%. These 6 nodes are critical for
information flow, especially one with betweenness of almost 60%, meaning that almost 60% of
communication paths among other nodes pass through this central node. The node represents Mohamed
Atta, the leading organizer of the attack whose central position in the network is confirmed by other
centrality indicators as well.

Distribution of degrees of nodes is particularly interesting. Degrees of nodes are exponentially distributed:
the degree of most of the nodes is small, while few nodes have high degree (see Figure 2 and Figure 3).
This property characterises the so called scale free networks [14] [15]. Scale free networks form
spontaneously, without needing a particular plan or interventions of central authority. Nodes that are
members of the network for a longer time, that are better connected with other nodes, and that are more
significant for network’s functioning, are also more visible to new members, so that the new members
spontaneously connect more readily to such nodes than other, relatively marginal ones.

40
35
30
25
20 -
15
10 1

. I

lto4 5t08 9to 12 13 and more

Number of nodes

Degree of nodes

Figure 3. Distribution of degrees of nodes in the network (see Figure 1) of kidnappers
and their supporters.

On the pattern of scale free networks, the Al Qaeda’s Training Manual [16] states: “The cell or cluster
methods should be organized in a way that a group is composed of many cells whose members do not
know each other, so that if a cell member is caught, other cells would not be affected, and work would
proceed normally”.

2.2 Link Analysis

Link analysis is an analytic technique for making relationship explicit. The link analysis is the process of
building up networks of interconnected objects through relationship in order to expose patterns and trends.
Link analysis uses item-to-item associations to generate networks of interactions and connections from
defined datasets. Link analysis methods add dimensions to an analysis that other forms of visualization do
not support. Link analysis can be used to construct inferential structures of organizations or interactions
which can be tested later. It is very well suited for hypothesis construction and can be applied to a variety
of problems in Armed Forces Intelligence (for example, orders of battle), in Political Intelligence and in
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Sociological Intelligence research and analysis [17].

Despite the seeming novelty of link analysis, the federal government in USA has used link analysis, for
nearly fifty years. Karl Van Meter describes the two main types of the link analysis: the village survey
method and traffic analysis [29]. The village survey method was created and used by Ralph McGehee of
the CIA in Thailand in the 1960s to understand family and community relationships. He conducted a
series of open-ended interviews and in a short time was able to map out clandestine structure of local and
regional Communist organizations and associated sympathetic groups. Traffic analysis (also known as
communication link analysis) began during World War II and its importance continues to this day. This
technique consists of the study the external characteristics of communication in order to get information
about the organization of the communication system. It is not concerned with the content of phone calls,
but is interested in who calls whom and the network members, messengers, and brokers. Traffic analysis
was also used by the British MI5 internal security service to combat the IRA in the 1980s and 1990s and
continued to be used across the world by law-enforcement agencies including the US Defense Intelligence
Agency (DIA) Office of National Drug Control Policy [29].

The Analyst Notebook [32] is the primary software used for link analysis. Currently on its sixth version,
this software is recognized as one of the world’s leading analytical tools and is employed in more than
1,500 organizations. SNA improves upon link analysis by moving from single variable analysis to
multivariate analysis, allowing the individual to control many factors at once. The change from single
variable to multivariate analysis is quite significant when researching terrorism: a number of factors affect
terrorism, not one single factor. For example, the prediction for one to participate in a terrorist activity
might not be strongly affected by the single variable of being related to a terrorist member. However, the
combination of multiple variables, such as poverty and type of government, combined with the link to a
terrorist member, may cause a person to participate in a terrorist activity. Multivariate analysis allows us
to take into account these multiple variables and their effects when controlling another variable.

From the outside, it is difficult to understand how link analysis is being used in the federal governments.
Confidentiality prevents government analysts from discussing their work with researchers and private
companies without security clearances. Despite this lack of information, it is clear that government is
interested in using network techniques in dealing with counterterrorism strategies. Many government
agencies, such as Defense Advanced Research Projects Agency (DARPA), U.S. Army Research Labs, the
U.S. Office of Naval Research (ONR), the National Security Agency (NSA), the National Science
Foundation (NSF), and the Department of Homeland Security (DHS) have funded research related to link
analysis.

The link analysis systems are being used in the investigative world, but from unclassified work, it is
known that they are only used for identifying central players and some interesting patterns from the
available datasets. Apparently little work is carried out for destabilizing of terrorist networks [1] [2] [4]
[18] [26]. The motivation behind this study is to connect the dots in order to assist law enforcement
agencies to disconnect / destabilize the most of the network by capturing/eradicating some key players.

3.0 EXISTING APPROACHES

Existing terrorist network research is still at its incipient stage. Although previous research, including a
few empirical ones, have motivated the call for new approaches to terrorist network analysis [18] [19]
[20], studies have remained mostly small-scale and used manual analysis of a specific terrorist
organization. For instance, Krebs [12] manually collected data from public news releases after the 9/11
attacks and studied the network surrounding the 19 hijackers. Sageman [21] analyzed the Global Salafi
Jihad network consisting of 171 members using a manual approach and provided an anecdotal explanation
of the formation and evolution of this network. None of these studies used advanced data mining
technologies that have been applied widely in other domains such as finance, marketing, and business to
discover previously unknown patterns from terrorist networks.

The papers [18] [22] provide examples of social network analysis in counterterrorism applications and
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indicate both usefulness and some limitations of social network analysis as a basis for quantitative
methods for situation awareness and decision-making in law enforcement applications. Raab & Milward
[22] discuss the organizational structure of certain drug trafficking, terrorism, and arms trafficking
networks, showing how some of them have adapted to increased pressure from the States and international
organizations by decentralizing into smaller units linked only by function, information, and immediate
need. They also describe ways and structures of cooperation between different kinds of criminal networks,
for example in financing terrorists by illegal diamond and drug trafficking.

Recently, computer scientists have become interested in network analysis. This has led to an increased
emphasis on studying the statistical properties of large networks, such as the Internet, criminal networks,
and, even, infrastructure networks [23]. This influx of people to the field has also led to several new
approximate algorithms to compute important properties [1] [2] [24] [25]. Most of the above mentioned
literature has used graph theory and SNA techniques for terrorist network analysis.

Jonathan D. Farley presented a new mathematical approach [26] to destabilize terrorist networks using
order theory. This paper pointed that modeling terrorist networks as graphs does not give enough
information to deal with the threat, “modeling terrorist cells as graphs ignores an important aspect of their
structure, namely their hierarchy, and the fact that they are composed of leaders and followers ". Jonathan
D. Farley proposed an alternative approach that better reflects an organization's hierarchy. In this case, the
relationship of one individual to another in a cell becomes important. Leaders are represented by the
topmost nodes in a diagram of the ordered set representing a cell and foot soldiers are nodes at the bottom.
Disrupting the organization would be equivalent to disrupting the chain of command, which allows orders
to pass from leaders to foot soldiers [26].

What is needed is a set of integrated methods, technologies, models, and tools to automatically mine data
and discover valuable knowledge from terrorist networks based on large volumes of data of high
complexity.

The system to be proposed, we represent a terrorist network by an undirected graph; then we convert it
into a directed graph with the help of centrality measures [1] [2]. Then we propose an approach for
destabilizing the terrorist network to the converted directed graph into a hierarchical chart using
dependence centrality [1]. From the hierarchical chart, investigators and law enforcement agencies can
easily distinguish the leaders and peripheries in the network in order to destabilize the network. Our
newly introduced dependence centrality measure may also be very useful in destabilizing terrorist
networks, because it shows the nodes which are totally depending on particular nodes. If the nodes are
completely depending on the other nodes, they will be isolated (cut-off from the network completely) by
capturing the node on which those nodes are depending.

4.0 DESTABILIZING TERRORIST NETWORKS

In this section we present a theory behind analyzing and destabilizing of terrorist networks. We have
implemented all the models discussed in this section in iMiner.

4.1 The Efficiency of a network

The network efficiency E (G) is a measure to quantify how efficiently the nodes of the network exchange
information [27]. To define efficiency of a network G, first we calculate the shortest path lengths dj
between i™ and ™ nodes. Let us now suppose that every node sends information along the network,
through its links. The efficiency in the communication between i™ node and j™ node is inversely
proportional to the shortest distance: when there is no path in the graph between i and j" nodes, we get d;j
= 400 and efficiency becomes zero. Let N is known as the size of the network or the numbers of nodes in
the graph, the average efficiency of the graph (network) of G can be defined as:
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The above formula gives a value of E in the interval of [0, 1].
4.2 Position Role Index (PRI)

The PRI is our recently introduced measure [2] which highlights a clear distinction between followers and
gatekeepers (It is a fact that leaders may act as gatekeepers). It depends on the basic definition of
efficiency as discussed in equation (5). It is also a fact that the efficiency of a network in presence of
followers is low in comparison to their absence in the network. This is because they are usually less
connected nodes and their presence increases the number of low connected nodes in a network, thus
decreasing its efficiency.

PRI=E(G)-E(G-wv),i=1,..,N, (6)
where G — vjindicates the network obtained by deactivating node v; in the graph G. If we plot the values

on the graph, the nodes which are plotted below x-axis are followers, whereas the nodes higher than
remaining nodes with higher values on positive y axis are the gatekeepers.

4.4 Dependence Centrality (DC)

The dependence centrality of a node is defined as how much that node is dependent on any other node in
the network. It is defined as:

=y MED ¢ ™)

izkrec  Np

where i™ node is the root node which depends on j™ node, N, is the number of geodesic (shortest path)
from i" node to node k™ through j™ node. Also m(i,j)is inverse of geodesic distance 1/d(i,j))from i node
to j™ node. The value of Q is taken 1 if graph is connected and 0 in case it is disconnected. In this paper
we take € as 1, because we consider that graph is connected.

The first part of the formula tells us that:

How many times i™ node uses j™ node to communicate with other k™ node of the network? In simple
words K is the node of the network, to which node i is connected through node j. (The connection
represents the shortest path of node i to node k, and node j is in between).

We applied the above mentioned measures (described in subsection 4.1-4.2) in the network of terrorists
involved in tragic events of September 11, 2001 (as shown in Figure 1). The results are depicted in Figure
4. The results show that node 33 (Mohamed Atta) as key player in the plot. The A E and PRI of this node
is higher than all nodes which prove that this node played an important role in the plot and worked as
gatekeeper and removing this node the efficiency of the graph is decreased from 0.395 to 0.32. This
clearly identifies the importance of this node in the network. All the models presented in previous
sections are implemented in iMiner.
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Figure 4. The efficiency of the original network E(G) = 0.395. The removed node is shown
on x-axis. The efficiency of the graph once the node is removed is shown as E (G — v));
while importance of node. The newly introduced measure position role index is shown as
PRI.

5.0 THE SOFTWARE PROTOTYPE

The iMiner is an experimental system, which provides the answers of the following questions.

e  Who is likely to be an important person (node) in the network?
Why s/he is important?
Which terrorist is highly/ less connected?
What are various position roles in the network?
Is there any command structure in the network?
Is it possible to construct hidden hierarchy of the non-hierarchical networks?
Which nodes represent key players?
What is the efficiency of the network?
How much the efficiency of the network is affected by eradicating one or more terrorists?
How can the law enforcement agencies use (often incomplete and faulty) network data to
disrupt and destabilize terrorist networks?
The system architecture of investigative data mining toolkit (iMiner prototype) is depicted in Figure 5.
The first stage of network analysis development is intended to automatically identify the strongest
association paths, or geodesics, between two or more network members. In practice, such task often
entails intelligence officials to manually explore links and try to find association paths that might be useful
for generating investigative leads.
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Figure 5. The System Architecture of iMiner

The iMiner allows the analyst to determine hierarchy of covert networks, which may help law
enforcement and intelligence agencies in understanding the structure of the covert networks. In addition
to this, intelligence agencies can easily set the priorities for eradicating some important nodes in the
network by visualizing how much the efficiency of the network is minimized by the capture of a node.

The iMiner knowledgebase has following type of tables
o Entities Master Table

General Links Repository

Domain Tables

Entity Attribute

Geodesic Values Tables

centrality tables
e Setting Tables

The above tables are briefly described below:

Entities Master Table
This table is a table where entity is assigned with unique id and very primary information about entity like
entity’s name and type being saved.

General Links Repository
This table has a record of all relationships in form of Association Data Model. These all relationships are
used while searching the database and graphing a particular plot.

Domain Tables

These tables are subsets of general links repository. The relationships which are connected to a particular
domain are stored separately in that domain table so that the complex operations which performed by
iMiner during analysis takes place efficiently.
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Entity Attribute Tables
These tables are used to store attributes of entities.

Geodesic Values Tables

These tables are used to save the geodesic values which are calculated during analysis of a particular
domain and are useful for other analysis activities. The iMiner has components building to show those
values in anytime to help analysts.

Centrality Tables
These tables are used to save the values of centralities (SNA centralities, dependence centrality, position
role index, etc.) of each node in a graph of a particular domain under investigation.

Setting Tables
There are some tables which are used to save settings of iMiner, like search depth, entity types along with
their visualization scheme, etc.

In the aftermath of the September 11™ attacks, it was noted that coherent information sources were not
available to the researchers [3]. Information was either available in fragmentary form, not allowing
comparison studies across incidents, groups or tactics, or made available in written articles — which are not
readily suitable for quantitative analysis of terrorist networks. Data collected by law enforcement
agencies, while potentially better organized, are largely not available to the research community due to
restrictions in distribution of sensitive information.

To counter the information scarcity, we have developed knowledgebase about the terrorist attacks
occurred in the past and the information about terrorist organizations involved in those events. This
information is mostly collected from open source media (but authenticated websites), such as
http://www.trackingthethreat.cony/.

The focus of the knowledgebase we have developed is the agglomeration of publicly available data and
integration of the knowledgebase with investigative data mining software prototype. The main objective is
to investigate and analyze terrorist networks to find hidden relations and groups, prune datasets to locate
regions of interest, find key players, characterize the structure, trace point of vulnerability, and detect
efficiency of the network and to discover the hidden hierarchy of the non-hierarchical networks. The
Website http://www.trackingthethreat.com/ represents the original open-source database on Al Qaeda. It
contains data in the form of:

Entities: Discrete data elements that comprise people, places, organizations, events, etc.

Relationships: Information about the personal, organizational, transactional, and historical connections
between entities.

Metadata: Additional information about entities and relationships that help form a more complete picture.
Notes and Documents: Unstructured text that provides background information on entities, relationships,
and metadata.

The iMiner system applies Spider Management System as well as spiders to import data that is available at
World Wide Web. It can be developed to get information from online repositories and save it in its
knowledgebase for analysis as shown in Figure 6.
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Figure 6. Spidering the information from Internet

The iMiner spidering system has spider implementation for a web resource as mentioned above
(http://www.trackingthethreat.com/). Similarly this model can be evolved to make most of information
present in shape of static and dynamic websites. The data flow model for the prototype is shown in Figure
8.

The iMiner supports domain-based study of network system. The domain can be similar to a particular
case study (for example Bali Bombing or 9/11 case studies) with resizable boundaries. An investigating
officer may expand the domain by including additional entities or reduce it by excluding less important or
partially involved entities. The main advantage of this type of approach is to isolate a piece of data in
which an investigating officer is interested, to concentrate analysis activities only on those entities.

To reuse the type of data, the iMiner has a data transform subsystem; the purpose of the subsystem is to
import data from different legacy systems and transform them into the format required by iMiner
knowledge base to carry out further investigation as shown in Figure 7.

Data Exported in Data
CSV or XML >
P Transform iMiner
Subsystem Knowledgebase
I

Figure 7. The data transform sub-system

Most of the commercial database solutions provide facilities to export data in at least CSV or XML
format. The information exported from any legacy system or data source in CSV or XML format can be
imported to extend iMiner knowledgebase to proceed with further investigation.
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Figure 8. The data flow model of iMiner
6.0 CASE STUDIES

In this section, we present four case studies of the terrorist attacks occurred / planned in the past to test the
algorithms and models recently published [1] [2].

6.1 Bali Night Club Bombing Terrorist Attack

On October 12, 2002 a car bomb exploded outside the Sari night club in Bali, a popular tourist island in
Indonesia [28]. The attack was the worst terrorist incident in the history of Indonesia, with 202 civilians
dead and more than 100 wounded. According to the Australian Broadcasting Corporation, the mastermind,
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behind the attacks was Al-Qaeda's chief representative and senior planner in Southeast Asia, as well as
being operational chief of Jemaah Islamiya, Ryuduan bin Isomuddin, also known as Hambali. Hambali
was detained by the U.S. government in August of 2003. Hambali was also believed to have been involved
in the 2003 Marriot Hotel bombings in Jakarta, facilitated the January 2000 meeting in Malaysia including
two September 11th hijackers, and an associate of 9/11 mastermind Khalid Sheikh Mohammed.

The Bali Night Club Bombing 2002, when searched in iMiner knowledgebase, results the graph as shown
in Figure 9. Using algorithms for destabilizing terrorist networks (for details see [2]), we succeeded in
constructing the hidden hierarchy of Bali bombing terrorist attack, shown in Figure 10, using iMiner. This
hierarchy has some unconnected nodes, where as you can find a hint of patterns some time. The H. B. A.
Haq and its descendants form a group (This cluster was acted as executive cluster), while the cluster
Khalid Sheikh Mohammed (and his affiliates) was well known as a strategic cluster, whereas Ryuduan bin
Isomuddin (known as Hambali) and his associates cluster known as tactical / logistic cluster . The
accuracy of the software can be determined by the fact that all of H. B. A. Haq, Khalid Sheikh Mohammed
and R. Isomuddin were key players in the reality. H. B. A. Haq was termed as potential leader while
Khalid Sheikh Mohammed was the key conspirator.

In this case study we consider the connections network of terrorist involved in Bali Night Club Bombing
and their direct or indirect relationships with other entities. Of course, mapping networks after an event is
relatively easy, while the real problem in this case is to map the covert networks to prevent terrorist
activity, a task that can be more difficult. The network reported in Figure 9 is constructed by iMiner,
using publicly released information taken from major newspapers/ websites. The network size (say N) is
125 nodes, actual ties (arcs/ links) are 195, potential ties, which can be calculated by using the formula:

N (N-1) / 2, are 7750. The density of the network (the number of actual ties divided by the number of
potential ties) is approximately 2.5%. To individuate the critical nodes, i.e., the terrorists who played key
role in the network, we deactivate one by one (from the network, remember the size of the network is
125), then we calculate the efficiency of the new network and the drop of efficiency caused, discussed in
section 4. In Table 1 we show 6 most important nodes ranked according to the measure position role
index defined in section 4.2, the degree of each node (represented as k) is also reported.

Table 1. Effect of the deactivation of a node in the terrorist network of Bali Night Club Bombing
2002 attacks

Removed E(G-v;) k PRI
Node
K. S. 0.3063 27 0.1854
Mohammed
Riduan 0.3329 23 0.1148
Isamudin
Yazid Sufaat 0.3342 12 0.1112
Wan Min 0.3700 11 0.0161
Huda Bin A. 0.3745 12 0.0042
Haq
Osama Bin 0.3745 3 0.0027
Laden
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The efficiency of the network is 0.382. The removed node is listed in the first column; the efficiency of
the graph once the node is removed is reported in the second column, while the relative drop of efficiency
is in the third column. In the fourth column we report, as an alternative measure of the importance of a
node, the degree of (i.e. the number of links incident with) the removed node. The last column is reported
with PRI of the nodes. The six most important nodes of the network are ordered according to their
positions in the network, i.e. leaders/ gatekeepers/ followers.

It is crystal clear from the Table 1, that K.S. Mohammed was the most connected node in the network
(k=27), and our recently introduced measure i.e. PRI also proves him as an important entity (key player),
removing this node the efficiency of the network is decreased to 0.306. Moreover the measure PRI of
Huda Bin A. Hag is lower than other leaders of two clusters, shows that he was the leader execution
cluster. It is also interesting to note that in this network Osama Bin Laden is less connected node (k=3)
and position role index measure shows his leading capabilities. ~Moreover, 64% of the entities in this
network (80 out of 125) having degree (k) is equal to 1 (it means about 2/3™ of the network members
degree is 1), entity Al Qaeda is the most connected node having k = 52 (it means that 52 nodes have
directly affiliated with the terrorist organization Al Qaeda) and 29 nodes are directly connected with Bali
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Figure 10. Hidden hierarchy constructed by iMiner for Bali Bombing Attack

6.2 Dirty Bomb Plot

Adnan Gulshair el Shukrijumah is a suspected of plotting to carry out a terrorist attack against U.S.
interests abroad or domestically [30]. When Khalid Sheikh Mohammed, former operational commander
of Al Qaeda, was captured and interrogated, he fingered Adnan el Shukrijumah as the man who would
later be in charge of new attack. Shukrijumah is believed to be working on Osama bin Laden’s plan to
trigger a radiological disaster inside the United States [33] — the so-called “dirty-bomb” scenario where a
small charge would trigger dispersion of radiation over a large area, wreaking havoc on those caught in the
blast and making the blast area uninhabitable. High-grade uranium is not necessary for this project;
ordinary, low-grade nuclear waste will be deadly enough.

El Shukrijumah has eluded capture. According to an FBI informant, El Shukrijumah was spotted 2002 in
Hamilton, Ontario, posing as student at McMaster University, which has 5-megawatt research reactor.
The U.S. officials believe El Shukrijumah was in Hamilton to obtain radioactive material. We have
collected dataset for dirty bomb terrorist network plot which is depicted in Figure 11.
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Figure 11. Terrorists’ involvement for Dirty Bomb plot

Using the algorithms for construction of hidden hierarchy [2], the hierarchy for the dirty-bomb plot is
shown in Figure 12.

Figure 12. Hidden hierarchy constructed by iMiner for Dirty-Bomb Plot
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It is believed by authorities that Shukrijumah may have been trained at an Al Qaeda terrorist camp[34].
Shukrijumah has extensive flight training that he received at a flight school in Florida and is a pilot,
though he is not registered with the Federal Aviation Administration (FAA). Obviously, this is of concern
to law enforcement since virtually all the Al Qaeda hijackers involved in the September 11 terrorist
attacks, received training to be pilots at U.S. private flight schools.

Also, it is believed by the FBI that Shukrijumah has been trained by Al Qaeda to operate as a terrorist
organizer and operational / field commander and lead or coordinate a terrorist assault, much the same way
Mohammed Atta was designated and trained as an organizer and operational/field leader by Al Qaeda to
lead the 9/11. El Shukrijumah may play a large and leading role in the next set of terrorist attacks to
come upon the U.S. Shukrijumah was last seen in the Miami or southern Florida area in the early part of
2003. He has not been seen since and no one knows of his whereabouts [34].

6.3 WTC 1993 Bombing Plot

The WTC bombing attack in the garage was occurred on February 26, 1993 of the New York World Trade
Center. A car bomb was planted by terrorist group in the underground parking garage below tower One.
It killed six, injured over 1,000 and presaged the 9/11 attacks on the same buildings.

We have collected data of the terrorists involved in the attack and the network is shown in Figure 13.

[Eomting

r. Salamah

Rarmzi ‘v’auﬁef ‘
hicharrmed
(A H. Murad

Figure 13. Terrorists Network mvolved in WTC 1993

The group size of the network is 13; potential ties are 78; whereas actual ties are 14. The density of the
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network is 18% and efficiency of the network is 0.555. The most important node in the network is Ramzi
Yousef (k=10 and Eigenvector centrality = 16). Removing this node the efficiency of the graph is
decreased to 0.0845.

Using algorithms for the construction of hidden hierarchy of covert/ terrorist networks [2], the hierarchy of
the network is shown in Figure 14.

///\\

Figure 14. Hidden hierarchy constructed by iMiner for the terrorist network shown in
Figure 13

It is fact that Ramzi Yousef began in 1991 to plan bombing attack with USA. Yousef’s Uncle Khalid
Sheikh Mohammed gave him advice and tips over the phone, and funded him. Yousef entered USA with a
Iraqi passport without a U.S. visa on September 1, 1992 [35]. Muhammad Jamal Khalifa, Omer Abdel
Rehman, Abdul Rehman Yasin, Abdul Hakim Murad were key companions of Ramzi Yousef. There is an
error found in the dataset that Ahmed Yousef is an alias used by Ramzi Yousef, but mistakenly it appears as
an independent actor (This is an error). Moreover M. Salameh was an informant and he informed FBI about
the plot.

6.4 September 11, 2001 Terrorist Plot

The September 11, 2001 attacks (often referred to as 9/11—pronounced "nine eleven") consisted of a series
of coordinated terrorist suicide attacks upon the United States, predominantly targeting civilians, carried out
on Tuesday, September 11, 2001 [36].

That morning, 19 terrorists affiliated with al-Qaeda hijacked four commercial passenger jet airliners. Each
team of hijackers included a trained pilot. Two aircraft (United Airlines Flight 175 and American Airlines
Flight 11) crashed into the World Trade Center in New York City, one plane into each tower (WTC 1 and
WTC 2). Both towers collapsed within two hours, followed by WTC 7 later that day. The pilot of the third
team crashed American Airlines Flight 77 into the Pentagon in Arlington County, Virginia. Passengers and
members of the flight crew on the fourth aircraft (United Airlines Flight 93) attempted to retake control of
their plane from the hijackers; that plane crashed into a field near the town of Shanksville in rural Somerset
County, Pennsylvania. As well as the 19 hijackers, a confirmed 2,973 people died and another 24 are
missing but presumed dead as a result of these attacks [36].

The renowned Social Network Analyst Valdis Krebs [12] mapped the network of 9/11 (hijackers and their
affiliates) as shown in Figure 1. Using the algorithms for detecting hidden hierarchy of non-hierarchical
terrorist networks [2], we tested the network of terrorists involved in 9-11 tragic events and results are
depicted in Figure 15.
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Figure 15. The hierarchy clearly suggests that Muhammad Atta was the most powerful
person (leader) of the plot. While M.A. Shehhi was assisting him, as he is below in the
hierarchy. They both were found the key leaders of the plot by 9-11 commission.

7.0 CONCLUSION

In this paper, we presented an overview of an investigative data mining toolkit (iMiner software
prototype) which we have developed for undertaking analysis of terrorist networks. In general
investigative data mining has been shown to be a promising and potentially powerful area of research.
The paper presented interesting patterns gleaned from the data. We discussed three innovative ideas of our
research which were already published in [2] and featured in Government Computer News [31]. The
mathematical models and algorithms discussed in the paper are implemented in the prototype. The iMiner
demonstrates key capabilities and concepts of a terrorist network analysis toolkit. Using the toolkit
investigating officials can predict overall functionality of the network along with key players. Thus
counterterrorism strategy can be designed keeping in the mind that destabilization not only means
disconnecting the dots (nodes) but disconnecting those key players from the peripheries by which
maximum network could be disrupted. The investigative mining can be used to understand terrorist
networks, and we are of the view that investigative data mining tool like iMiner, score over traditional
analysis of networks with large volume of data and investigative data mining could reduce the consequent
overload on analysts. The results presented in this paper are our findings based on limited exercise in
exploring the utility of investigative data mining in analyzing terrorist networks. The may also be used for
law enforcement agencies for destabilizing of terrorist networks for capturing the key nodes. The
intelligence agencies may also evaluate the efficiency of the networks by capture of a particular node.
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Further real-time or near real-time information from multiplicity of databases could have the potential to
generate early warning signals of utility in detecting and deterring terrorist attacks. It is necessary, of
course, to have ‘experts’ in the loop. This analysis has provided substantive and in-depth analysis of
terrorist networks. Furthermore this analysis has provided a richer and deeper understanding and insight
into terrorist networks and has provided approaches to destabilize the networks.

In this paper we presented the system architecture of our software prototype and the process by which we
harvested data from web and stored in the knowledgebase. The focus of the knowledge base we have
developed is the agglomeration of publicly available data and integration of the datasets with the software
prototype in order to investigate interested patterns. The flow model of the prototype is also shown and
discussed
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Introduction

e The concern about national security has
Increased significantly since the terrorist attack
on September 11, 2001

e Intelligence agencies such as the CIA,FBI and
NSA are actively collecting and analyzing
Information to investigate terrorists’ activities

e Academic world has increased the attention paid
to analyzing terrorist networks. The analysis of
terrorist networks divided into two groups: Data
Collectors and Modelers



Background

After tragic attacks by kidnapped airlines on New York and
Washington in September 2001, the interest for Al Qaeda in
public and media rose immediately.

Experts and Analysts all over the world started to offer various
explanations of Al Qaeda’s origins, membership recruitment,
modes of operation, as well as possible ways of disruption.

Al Qaeda is “a net that contains independent intelligence”, that it
“functions as swarm?”, that it “gathers from nowhere and
disappears after action”, that it is “an ad hoc network?”, “an
atypical organization”.

America’'s intelligence community stands at a critical
crossroads, there is need how best to improve the collection and
analysis of critical foreign intelligence as America fights an
increasingly dangerous international war on terror.

Current terrorist threat is not organized with conventional lines
of authority.



Background

Instead they are organized as loose networks and so belong to
an analytically distinct category.

Al Qaeda has evolved from a centrally directed organization
iInto a worldwide franchiser of terrorist attacks

Al Qaeda does appear to have become increasingly
decentralized after the arrest of key Al Qaeda leaders and losing
the safe haven i.e. Afghanistan.

Al Qaeda convened a strategic summit in northern Iran in
November 2002, at which it was decided that it could no longer
operate as hierarchy, but instead would have to decentralize.

Looking to the facts and figures, we propose mathematical
models and practical algorithms for Destabilizing Terrorist
Networks.

In our research we have also constructed a knowledgebase of
the terrorist events occurred in the past.



Challenges

Data Collection is difficult for any network analysis because
it is hard to create a complete network

— It is specially difficult to gain information on terrorist
networks

e Terrorist organizations do not provide information on
their members, and government rarely allows
researchers to use their data

— A number of academic researchers focus primarily on
data collection on terrorist organizations, analyzing the
iInformation through description and straightforward
modeling

e E.g. Valdis Kreb, Jose A. Rodriguez, Marc Sagman

— Despite many strengths, there are a few
drawbacks

— By dealing with open sources, these authors are
limited in acquiring data. With open sources, if
author does not have information on terrorists,
he or she assumes they do not exist. If
researcher could not find an al- Qaeda operative
in US, he could assume, no al-Qaeda network in
US



Challenges

The common problem for the modelers (in the field of
analysis of terrorist networks) is the issue of data

Any academic work is only as good as the data, no matter
the type of advanced methods used

Modelers often do not have the best data, as they have not
collected individual biographies (like sageman) and do not
have access to classified data

Many of the models are created data-free or without
complete data

Modelers often do not have a foundation in terrorist studies
nor do they always work with top counter-terrorism
experts

— Without the help of counterterrorism experts, it is
difficult to turn the numbers and the graphic models
into interpretable results that make sense in the context
of vast literature on terrorism



Goals

Intelligence and law enforcement agencies are often interested in
finding structural properties of terrorist networks.

This study aims to answer the following questions:

e How Investigative Data Mining will be a useful tool for Law
Enforcement and Intelligence agencies in War against Terrorism?

e Who is important in a network?

e Why is s/he important?

e Which terrorist is highly/less connected?
e Which nodes (terrorists) are key players?
 What is the effeciency of a network?

e How much the effeciency of the network is reduced by eradicating
one (or some) of the key player (s)?

e Is it possible to construct hierarchy of non-hierarchical networks?

= How can the law enforcement use (often incomplete and faulty)
network data to disrupt and destabilize terrorist networks?



Investigative Data Mining

Investigative Data Mining (IDM) offers the ability to firstly
map a covert cell, and to secondly measure the specific
structural and interactional criteria of such a cell.

This framework aims to connect the dots between
individuals and “map and measure complex and covert
terrorist networks”.

The IDM focuses on uncovering the patterning of people’s
Interaction, and correctly interpreting these networks
assists “in predicting behaviour and decision-making
within the network™.

The IDM also endows the analyst the ability to measure the
efficiency of the cell as a whole, and also the level of
activity, ability to access others, and the level of control
over a network each individual possesses.

The measurement of these criteria allows specific counter-
terrorism applications to be drawn, and assists in the
assessment of the most effective methods of disrupting
and destabilizing a terrorist cell.



Main Contributions

= Cohesion Analysis (Discover tightly coupled nodes in various
subgroups using Cligues, N-Cliques, K-Cores, K-Clubs and K-Plexes
models from graph theory and subgroup Detection using new
algorithms)

-Memon N., HL Larsen (2006)”Detecting Terrorist Activity Patterns
using Investigative Data Mining Tool, International Journal of
Knowledge and System Sciences, Vol. 3(1), 43-52
-Memon N., HL Larsen (2006) ”Structural Analysis and
Mathematical Methods for Counterterrorism,In Proc ADMA 2006,
LNAI 4093,pp.1073-84.

e Role Analysis (Discover role positions within a network, for
example, gatekeepers, leaders and followers. Found effeciency of
the network and succeeded in dicovering how effeciency of the
network is decreasing while removal or capture of a terrorist

-Memon Nasrullah, HL Larsen, Practical Algorithms for Destabilizing
Terrorist Networks, In the proceedings of IEEE Intelligence and
Security Conference (1SI 2006) San Diego, LNCS 3975, pp. 389-
400.

e Power Analysis (Discover most powerful nodes in the network and
detect commanding structure in a network)

-Memon Nasrullah, HL Larsen, Practical Algorithms for
Destabilizing Terrorist Networks, In the proceedings of IEEE
Intelligence and Security Conference (1SI 2006) San Diego, LNCS
3975, pp. 389-400.

-Memon N. et al., Detecting Hidden Hierarchy of Terrorist
Networks, In post conference proc DCMMC-2006, Rayburn House
US Capitol, Washington, 28-29 September 2006, Springer LNCS.



Centrality Measures

Degree

Closeness

Betweenness

EV Centrality

Calculates Measures

The number of direct Connections to others;
connections to other nodes  network activity; power

Inverse of the sum of the Members key to network;
shortest paths to all other communication; reach;
nodes in the network reachability

Proprtion of times a node Information control; role as

iIs on the shortest path b/w intermediatery, gatekeeper
other pairs of nodes

Centrality of centrality Overall importance to the
member must be connected network; how close one node
to atleast g-k other members to others who are also close to

others




Dependence Centrality (DC)

The dependence centrality of a node is defined as how much the node is
dependent on any other node in the network.

This measure shows that how much one node is dependent on the another
node. We can also say that how much one node is useful to another node in
order to communicate with other nodes of the network.

Mathematically it can be written as:

pC, = Y 9miq

m=p pel Np

Where m is the root node which depends on n by DC_, centrality and N,
actually is the Number of geodesic paths coming from m to p through n, and
d,, is geodesic distance from m to n. The()is taken 1 if graph is connected
and O in case it is disconnected. In this paper we take() as 1, because we
consider that graph is connected. The first part of the formula tells us that:

How many times m uses n to communicate other node p of the network?



Detection of Hidden Hierarchy

Using undirected graph, we first convert it into directed graph using degree
centrality and Eigen Vector Centrality. For Example, if degree centrality of
one node is higher than other, then simply the directed link is originated
from that node and point towards other. If they are equivalent in terms of
degree, the link will originate from the node with higher EigenVector
centrality. If Eigen Vector centrality values for both nodes are equal, then
we ignore the link.

Then we identify the parents and children pairs. For example, if we have
two nodes, which are competing for being parent of a node, then we have to
iIdentify its correct parent. The correct parent will be the one which is
connected with maximum neighbours. This represents the fact that the true
leader, with respect to a node, which is more influential on its
neighbourhood.

Then we identify hierarchical relationship among the parents of a node

At the last step, we detect the parent of the node (among the possible
parents) by using dependence centrality.

When we identify parents, in such a way we traverse all the nodes. Then a
tree structure is obtained, which we call hierarchical chart.



System Architecture for IDM
Toolkit (iMiner)
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Role Analysis



Effeciency of a Network
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The network efficiency E (G) is a measure to quantify how
efficiently the nodes of the network exchange information.
To define efficiency of G first we calculate the shortest path lengths
{d;;} between two generic points i and j. Suppose that every node
sends information along the network, through its edges. The
efficiency g; in the communication between vertex i and j is

inversely proportional to the shortest distance: g; = 1/d;
11, J when there is no path in the graph between i, and j.



Importance of Node In a
Network

The main idea is to use as a measure of the centrality of a node i the
drop in the network efficiency caused by deactivation of the node. The
importance | (node;) of the it" node of the graph G is therefore:

[(node,)=AE=E (G) —E(G — node;).,1=1.....N,

Where G node; indicates the network obtained by deactivating node; in
the graph G. The most important nodes, i.e. the critical nodes are
the ones causing the highest AE.



Position Role Index

The PRI is proposed measure which highlights a clear distinction
between followers and brokers (It is fact that sometime leaders
may act as brokers). It depends on the basic definition of
efficiency as discussed in last two slides.

PRI=E (G)-E (G-node;).i=1....N,

It is crystal clear fact that efficiency of a network in presence
of followers is low as compared to their absence in the network.
This is because they are usually less connected nodes and their
presence increases the number of low connected nodes in a
network, thus decreasing its efficiency.

If we plot the values on the graph, the nodes which are plotted
below x-axis are followers, whereas the nodes higher than
remaining nodes with higher values on positive y axis are the
gatekeepers. While the nodes which are on the x-axis usually
central nodes, which can easily bear the loss of any node. The
leaders tend to hide on x-axis there.
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Terrorists involved in Bali Night Club Bombing
attack: Their directed and undirected
relationships
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Hierarchy constructed by iMiner for Bali
Bombing attack
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This hierarchy has some unconnected nodes, where as you can find a hint of
patterns some time. The H. B. A. Hag and its descendants form a group (This
cluster was acted as executive cluster), while the cluster Khalid Shaikh
Mohammed and his affiliates was well known as strategic cluster, whereas
R.Isamudin (known as Hambali) and his associates cluster known as
tactical/logistic cluster .

The accuracy of the algorithms can be determined by the fact that all of H. B. A.
Haq, Khalid Shaikh Mohammed and R. Isamudin were key players in the reality.

H. B. A. Hag was termed as potential leader while Khalid Sheikh Mohammed was
the key conspirator.



Effect of Deactivation of a Node of Terrorist
Network of Bali Bombing 2002 Attacks

Removed E(G- AE/E K PRI
Node Node)
K.S. 0.306333 0.19844 27 0.1854077
Mohammed
Riduan 0.332879 0.12900 23 0.1148397
[samudin
Yazid Sufaat | 0.334258 0.12537 12 0.1111511
Wan Min 0.370011 0.03182 11 0.0160787
Huda Bm A. | 0.374484 0.02012 12 0.0041839
Haq
Osama Bin | 0.374484 0.01868 3 0.0027257
Laden







O-11 terrorists and affiliates
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The dataset originally designed by Valdis Krebs, but re-constructed in
iIMiner Using metadata of every terrorist and the event



Hierarchical chart for 9-11
hijackers and their affiliates
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The hierarchy clearly suggests that Muhammad Atta was the key
leader of the plot. While Marvan Al Shehri was assisting him as he
Is below in the hierarchy. They both were suggested as potential

leaders in 9/11 attack and led their respective groups. They were
also both members of Hamburg Cell.



Cohesion Analysis Results of this
dataset



Structural Analysis for 9-11 hijackers
and their affiliates
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Role Analysis
And
Results of the dataset



Key Players and Important Nodes in 9-11 network
(Hijackers and their affiliates)
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The efficiency of the original network is E (G) = 0.395. The removed node
Is shown on x-axis; the efficiency of the graph once the node is removed is
reported as E (G — Node;), while the importance of the node (drop of
efficiency) is shown as A E. While position role index shown as PRI of the
removed node. The results prove important aspects of the network and
confirmed that Mohammed Atta (node # 33) was the ring leader.



9-11 Hijackers Terrorist Network
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Hierarchical Chart for 9-11 Hijackers
Network

American Flight 11 Mohamed Atta, W. Alshehri, Wail Alshehri, a.a. Omari and Satam Sugami
American Flight 77: Nawaf Alhazmi, Hani Hanjour, Salem Alhazmi, Majed Moqged and K. Midhar
UA Flight 175: Marwan Alshehi, Fayz Ahmed, M. Alshehi, Hamza alghamdi and Ahmed alghamdi
UA Flight 93: zaid Jarrah, Ahmed alhaznawi, Saeed Alghmdi and Ahmed alnami
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Structural Analysis for 9-11 hijackers
Network
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Key Players and Important Nodes in 9-11
network (Hijackers Network)

|——E(G-node) -=—AE/E ——PRI|

The efficiency of the original network E(G) = 0.414. The removed node is
shown on x-axis, the efficiency of the graph once the node is removed is
shown as E(G — node); while the relative drop of efficiency is shown as delta
E /7 E. The newly introduced measure position role index is shown as PRI.



CASE 03: st Worlal raele Center 1993

‘I’?*

L

.'_.'_;.: ﬁ

i &

1"-. ' o
!
hI




WTC 1993 Bombing Terrorist Network
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Hierarchical Chart for WTC 1993
Bombing Terrorist Network
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Khobar Tower Bombing Plot
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No Cammand Structure found
In Khabar Tower Bombing Plot




Conclusion

We presented an overview of Investigative Data Mining Toolkit

The paper presented interested patterns gleaned from data. The
IDM tollkit demenstrates key capabilities and concepts of a
terrorist analysis toolKkit.

The toolkit can be used to understand the terrorist networks, and
we are of the view that iMiner toolkit, score over traditional
analysis and could reduce the consequent overload on analysts

The model for construction of hierarchical chart illustrates the
command structure of terrorist network and allows destabilizing
techniques to be aimed at this command structure

It must be noted that hierarchical chart is not a sociogram, but a
command structure, used to visually demostrate the effectiveness
of targeting the highly ranked nodes to disrupt the decision
making capacity

This method attempt to remove all command members from the
network, and leaving the remaining cell members without any
orders or hierarchy in an attempt to significantly reduce the
decision making capacity of the cell



Questions/ Suggestions/ comments
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